Replication factor C recruits DNA polymerase delta to sites of nucleotide excision repair but is not required for PCNA recruitment.
نویسندگان
چکیده
Nucleotide excision repair (NER) operates through coordinated assembly of repair factors into pre- and postincision complexes. The postincision step of NER includes gap-filling DNA synthesis and ligation. However, the exact composition of this NER-associated DNA synthesis complex in vivo and the dynamic interactions of the factors involved are not well understood. Using immunofluorescence, chromatin immunoprecipitation, and live-cell protein dynamic studies, we show that replication factor C (RFC) is implicated in postincision NER in mammalian cells. Small interfering RNA-mediated knockdown of RFC impairs upstream removal of UV lesions and abrogates the downstream recruitment of DNA polymerase delta. Unexpectedly, RFC appears dispensable for PCNA recruitment yet is required for the subsequent recruitment of DNA polymerases to PCNA, indicating that RFC is essential to stably load the polymerase clamp to start DNA repair synthesis at 3' termini. The kinetic studies are consistent with a model in which RFC exchanges dynamically at sites of repair. However, its persistent localization at stalled NER complexes suggests that RFC remains targeted to the repair complex even after loading of PCNA. We speculate that RFC associates with the downstream 5' phosphate after loading; such interaction would prevent possible signaling events initiated by the RFC-like Rad17 and may assist in unloading of PCNA.
منابع مشابه
Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells.
Nucleotide excision repair (NER) is the most versatile DNA repair system that deals with the major UV photoproducts in DNA, as well as many other DNA adducts. The early steps of NER are well understood, whereas the later steps of repair synthesis and ligation are not. In particular, which polymerases are definitely involved in repair synthesis and how they are recruited to the damaged sites has...
متن کاملNuclear dynamics of PCNA in DNA replication and repair.
The DNA polymerase processivity factor proliferating cell nuclear antigen (PCNA) is central to both DNA replication and repair. The ring-shaped homotrimeric PCNA encircles and slides along double-stranded DNA, acting as a "sliding clamp" that localizes proteins to DNA. We determined the behavior of green fluorescent protein-tagged human PCNA (GFP-hPCNA) in living cells to analyze its different ...
متن کاملInvolvement of flap endonuclease 1 in base excision DNA repair.
Base excision repair can proceed in either one of two alternative pathways: a DNA polymerase beta-dependent pathway and a proliferating cell nuclear antigen (PCNA)-dependent pathway. Excision of an apurinic/apyrimidinic (AP) site by cutting the phosphate backbone on its 3' side following incision at its 5' side by AP endonuclease is a prerequisite to completion of these repair pathways. Using a...
متن کاملSpatiotemporal dynamics of p21CDKN1A protein recruitment to DNA-damage sites and interaction with proliferating cell nuclear antigen.
The cyclin-dependent kinase inhibitor p21CDKN1A plays a fundamental role in the DNA-damage response by inducing cell-cycle arrest, and by inhibiting DNA replication through association with the proliferating cell nuclear antigen (PCNA). However, the role of such an interaction in DNA repair is poorly understood and controversial. Here, we provide evidence that a pool of p21 protein is rapidly r...
متن کاملSequential recruitment of the repair factors during NER: the role of XPG in initiating the resynthesis step.
To address the biochemical mechanisms underlying the coordination between the various proteins required for nucleotide excision repair (NER), we employed the immobilized template system. Using either wild-type or mutated recombinant proteins, we identified the factors involved in the NER process and showed the sequential comings and goings of these factors to the immobilized damaged DNA. Firstl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 30 20 شماره
صفحات -
تاریخ انتشار 2010